
Zubax Babel Datasheet

Revision 2021-12-20

Zubax Robotics
Akadeemia rd. 21/1, Tallinn 12618, Estonia

info@zubax.com

Q&A: forum.zubax.com

Overview

Zubax Babel is an advanced USB-CAN and UART-CAN
adapter that can be used as a standalone device or as an
embeddable module for OEM1.

Babel uses the quasi-standard SLCAN (aka LAWICEL) pro-
tocol (with Zubax extensions) for transferring CAN data
over USB and UART. There is a wide selection of software
products that can communicate with SLCAN-compatible
adapters.

Features

• Very low latency – the cumulative latency between the
host system and the CAN bus is under 1 millisecond.2

• Very high throughput – the device handles more
than 5000 frames per second in either direction
continuously.3

• Large RX buffer (255 CAN frames plus 2KB of serial
buffers) allows the device to handle short-term traffic
bursts regardless of the throughput of the host-side
interface.

• Proper prioritization of the outgoing CAN frames.
The adapter properly schedules the outgoing frames,
avoiding the inner priority inversion problem in the TX
queue.

• Embedded 120Ω CAN bus termination resistor that can
be turned on and off by a command.

• Embedded CAN bus power supply output that can be
turned on and off by a command.

• Hardware RX/TX timestamping.
• CAN bus supply voltage monitoring.
• SMD soldering pads for OEM applications.

1Original equipment manufacturer.
2Tested via USB on Linux 3.13 using a low-latency SLCAN driver from

the PyUAVCAN library.
3Tested via USB on Linux 3.13. When using the UART interface, the

throughput is limited by the UART baud rate setting.

Applications

• General-purpose USB-CAN or UART-CAN adapter.
• Diagnostic, monitoring, and development tool for

UAVCAN networks. We recommend Yakut for use with
UAVCAN applications.

• Generic CAN/UAVCAN development board.
• Programmable CAN unit in OEM applications.

© 2021 Zubax Robotics Support & feedback: forum.zubax.com

mailto:info@zubax.com
https://forum.zubax.com
http://uavcan.org
http://zubax.com
https://forum.zubax.com

Zubax Babel Datasheet 2021-12-20

Table of contents
1 Overview 1

1.1 Accessories 1
1.1.1 Enclosure 1

1.2 Quality assurance 1
2 Characteristics 2

2.1 Absolute maximum ratings 2
2.2 Environmental conditions 2
2.3 Power supply 2
2.4 Communication interfaces 3

2.4.1 CAN bus 3
2.4.2 USB 5
2.4.3 Dronecode debug port 5
2.4.4 SMD pads. 6

2.5 Product identification 6
2.6 Physical characteristics and pinout . . . 6

3 Operating principles 9
3.1 Overview 9
3.2 Start up and initialization 9
3.3 GPIO pins 9
3.4 LED indicators 9

4 SLCAN protocol 11
4.1 Introduction. 11
4.2 SLCAN commands 12

4.2.1 CAN controller configuration commands . 12
4.2.2 CAN frame transmission commands . . 13
4.2.3 Miscellaneous commands 13

4.3 SLCAN notifications 15
4.4 CLI extensions 15

4.4.1 CLI commands 16

5 OEM applications 20
5.1 SMD pads 20
5.2 Custom applications 20

6 Configuration parameters 21
6.1 Non-volatile configuration storage . . . 21
6.2 Firmware update considerations 21
6.3 Configuration parameter index 22

7 Embedded bootloader 23
7.1 Introduction. 23
7.2 State machine 23
7.3 LED indication 24
7.4 Error codes 24
7.5 Interface selection. 25
7.6 USB interface properties 25
7.7 UART interface properties 25
7.8 CLI properties 25
7.9 CLI commands 25

7.9.1 reboot 25
7.9.2 wait 25
7.9.3 download 26
7.9.4 zubax_id 26
7.9.5 state 26

7.10 YMODEM/XMODEM/XMODEM-1K
implementation details 27

A Appendix: Third party SLCAN API implemen-
tations 28

List of figures

1.1 Plastic enclosure. 1

2.1 Power supply architecture. 3
2.2 CAN bus interconnection diagram. 4
2.3 Physical dimensions of Babel. 7
2.4 Babel pinout. 8

6.1 Using the UAVCAN GUI Tool for configura-
tion parameter management. 21

7.1 Bootloader state machine. 24

A.1 An overview of the SLCAN API implemented
in various SLCAN-compatible adapters. . . 28

ii Support & feedback: forum.zubax.com © 2021 Zubax Robotics

https://forum.zubax.com
http://zubax.com

2021-12-20 Zubax Babel Datasheet

List of tables

2.1 Absolute maximum ratings 2
2.2 Environmental conditions 2
2.3 Power supply summary 2
2.4 Power supply characteristics 3
2.5 UAVCAN Micro (JST GH) standard connector

pinout 4
2.6 CAN bus interface characteristics 4
2.7 Dronecode Debug Mini standard connector

pinout 5
2.8 Dronecode debug port characteristics . . . 6
2.9 SMD signal pad characteristics 6
2.10 Physical characteristics 6

3.1 LED indicators 9
3.2 Status LED behavior 10

4.1 CAN controller configuration commands . . 12
4.2 CAN bit rate setting interpretation 12
4.3 CAN frame transmission commands. . . . 13
4.4 CAN frame transmission responses 13
4.5 Miscellaneous commands 13
4.6 UART baud rate setting interpretation . . . 14
4.7 Bits of the F bit mask 14
4.8 SLCAN notifications 15
4.9 SLCAN notification example 15
4.10 Zubax ID fields 17

6.1 Configuration parameter index 22

7.1 Bootloader communication interfaces . . . 23
7.2 Bootloader states 23
7.3 Bootloader state indicated via the CAN traffic

LED indicator 24
7.4 Bootloader error codes 24
7.5 Zubax ID fields 26

© 2021 Zubax Robotics Support & feedback: forum.zubax.com iii

http://zubax.com
https://forum.zubax.com

2021-12-20 Zubax Babel Datasheet

1 Overview
Zubax Babel is an advanced USB-CAN and UART-CAN adapter that can be used as a standalone device or as
an embeddable module for OEM.

1.1 Accessories

Babel can be used with the following accessories:

• Plastic enclosure described in the section 1.1.1.
• UAVCAN cabling and related items.
• Standard USB cables.
• Cables compatible with the Dronecode Autopilot Connector Standard.

Please contact your supplier for the ordering information.

1.1.1 Enclosure

Babel can be enclosed in a plastic enclosure pictured on the figure 1.1. The enclosure provides a mechanical
protection that makes the device more suitable for use as a general-purpose desktop CAN adapter tool.

Figure 1.1: Plastic enclosure.

Please contact your supplier for the ordering information; alternatively, visit the website at
https://github.com/Zubax/zubax_babel to download the 3D-printable enclosure models suit-
able for in-house manufacturing.

1.2 Quality assurance

Every manufactured Babel undergoes an automated testing procedure that validates that the device is func-
tioning as designed. The test log for every manufactured device is available on the web at https://device.
zubax.com/device_info. This feature can be used to facilitate the traceability of purchased devices and
provide additional safety assurances.

Every manufactured device has a strong digital signature stored in its non-volatile memory which proves the
origins of the product and eliminates the risk of sourcing unlicensed or counterfeit hardware. This signature
is referred to as Certificate of Authenticity (CoA). Please refer to the Zubax Knowledge Base to learn more
about the certificate of authenticity and how it can be used to trace the origins of your hardware.

1. Overview 1/28

https://github.com/Zubax/zubax_babel
https://device.zubax.com/device_info
https://device.zubax.com/device_info
https://kb.zubax.com

Zubax Babel Datasheet 2021-12-20

2 Characteristics

2.1 Absolute maximum ratings

Stresses that exceed the limits specified in this section may cause permanent damage to the device. Proper
operation of the device within the limits specified in this section is not implied.

Symbol Parameter Min Max Unit

Vsupply Supply voltage -0.3 6 V

Toper Operating temperature -40 85 °C

UART RX input voltage -0.3 6 V

CAN H/L input voltage -4 16 V

Table 2.1: Absolute maximum ratings

2.2 Environmental conditions

Symbol Parameter Min Max Unit

Toper Operating temperature -40 85 °C

Tstor Storage temperature -40 85 °C

φoper Operating humiditya 0 100 %RH

a Condensation not permitted.
Table 2.2: Environmental conditions

2.3 Power supply

Babel requires a +5 V DC power supply input which can be delivered via any of the available interface con-
nectors.

The device has a reverse current protection on the USB power input which prevents back-powering the USB
host when it is turned off.

The CAN power output has a solid state switch that can be enabled and disabled by setting the configuration
parameter can.power_on (page 22). The device can always be powered from the CAN bus regardless of the
state of the power switch.

An additional +3.3 V DC output on the SMD pads can be used to power any external circuitry when the
device is used as a development board or in OEM applications. The pinout specification for the SMD pads is
provided in the section 2.4.4.

The topology of the power supply circuits is documented on the figure 2.1. Power input and output capabili-
ties per interface are summarized in the table 2.3.

Interface Direction Section

CAN Input, optional output 2.4.1

USB Input 2.4.2

Dronecode debug port Input, output 2.4.3

SMD pads Input, output 2.4.4

Table 2.3: Power supply summary

2/28 2. Characteristics

2021-12-20 Zubax Babel Datasheet

USB
+5VDC input

DroneCode Debug Port
+5VDC input/output

SMD pads
+5VDC input/output

CAN connectors
+5VDC input

optional +5VDC output

Software-controlled
CAN power switch

3.3V
Linear

Regulator

+5VDC rail

+3.3VDC rail

USB anti-backfeed diode

CAN anti-backfeed
diode

SMD pads
aux. +3.3VDC output

Figure 2.1: Power supply architecture.

Symbol Parameter Min Typ Max Unit

Vsupply Supply voltagea 4.0 5.0 5.5 V

Isupply Self power consumptionb 30 50 80 mA

Itotal Total power consumptionc 500 mA

3.3 V rail output voltage 3.2 3.3 3.4 V

3.3 V rail external load 100 mA

a Any power input.
b SMD pads floating, Dronecode port disconnected.
c Maximum power that the device can consume, including all dependent power consumers, such as the

CAN bus power line or external loads connected via the SMD pads.
Table 2.4: Power supply characteristics

2.4 Communication interfaces

Babel implements the following set of communication interfaces:

• CAN 2.0A/B (ISO 11898-2).
• USB port (CDC ACM, virtual serial port).
• Dronecode debug port.
• SMD pads for OEM applications.

2.4.1 CAN bus

Babel implements the ISO 11898-2 CAN 2.0 A/B bus physical layer standard, also known as high-speed CAN.
The CAN bus interface is equipped with two standard UAVCAN Micro connectors (JST GH)4 electrically par-
allel to each other, which facilitates easy integration of the device into the end application without the need
to use T-connectors.

The default bit rate of the CAN bus can be set via the configuration parameter can.bitrate (page 22), in bits
per second.

Babel always attempts to configure the CAN timings so as to achieve settings as close as possible to the fol-
lowing:

• Sampling point location: 87.5%.
• Time quanta per bit: 8–10 for bit rate ≥ 1 Mbps, 16–17 otherwise.
• Resynchronization jump width: 1 time quantum.

The CAN interface recovers from the bus-off state automatically once the controller has observed 128 occur-
rences of 11 consecutive recessive bits on the bus, as defined by the CAN specification.

4https://kb.zubax.com/x/EoAh

2. Characteristics 3/28

https://kb.zubax.com/x/EoAh

Zubax Babel Datasheet 2021-12-20

The device has an embedded 120ΩCAN termination resistor that can be enabled and disabled by setting the
configuration parameter can.terminator_on (page 22). Changes to this configuration parameter take effect
immediately.

The power switch, when turned on, delivers a +5 V DC supply to the CAN bus, which can be used to power
other CAN bus nodes from Babel (section 2.3). The power switch is controlled by the configuration parameter
can.power_on (page 22). Changes to this configuration parameter take effect immediately.

The physical locations of the CAN connectors are documented in the section 2.6.

2.4.1.1 Device interconnection

The figure 2.2 shows a typical CAN bus topology. Observe that if Babel is a last device on the bus, a separate
termination resistor would not be required, since Babel has an embedded termination resistor that can be
enabled by setting the configuration parameter can.terminator_on (page 22).

The CAN bus interface of Babel is not redundant. If redundancy is desired, multiple Babels should be used
in parallel, one per bus.

Node B

CAN interface

Connector Connector

Node C

CAN interface

Connector Connector

Node D

CAN interface

Connector Connector

Terminator
120Ω

Node A

CAN interface

Connector Connector

Terminator
120Ω

...

Figure 2.2: CAN bus interconnection diagram.

2.4.1.2 Characteristics

Pin no. Type Function

1 Power +5 V power supply output and/or pass-trougha

2 Input/output CAN High

3 Input/output CAN Low

4 Ground Power & signal ground

a Power output can be enabled/disabled by setting the configuration parameter can.power_on (page 22).
Table 2.5: UAVCAN Micro (JST GH) standard connector pinout

Symbol Parameter Min Typ Max Unit

Bit rate 10 1000 Kbps

Positive-going input threshold voltage 750 900 mV

Negative-going input threshold voltage 500 600 mV

Differential output voltage, dominant 1.5 2.0 3.0 V

Differential output voltage, recessive -120 0 12 mV

Inter-connector current pass-througha -1 1 A

Connector resistance during the device’s lifetime 30 50 mΩ

CAN bus power output voltageb Vsupply−0.4 Vsupply−0.3 Vsupply V

CAN bus power output current -1 0.3 mA

Resistance of the embedded CAN terminator 113 120 127 Ω

a The limit is imposed by the PCB.
b CAN power supply voltage is a function of the input supply voltage and the voltage drop in the CAN power

switch circuit. The latter is dependent on the CAN power supply current.
Table 2.6: CAN bus interface characteristics

4/28 2. Characteristics

2021-12-20 Zubax Babel Datasheet

2.4.2 USB

The device implements a full-speed USB 2.0 port with the standard CDC ACM interface (also known as “vir-
tual serial port”). The device features driverless compatibility with all major operating systems (Windows,
GNU/Linux, Mac OS).5

The physical connector type is USB micro B (which is one of the most common device-side USB connector
types).

2.4.2.1 Identification

Babel will report the following properties to the USB host:

• Vendor ID – 0x1D50
• Product ID – 0x60C7
• Vendor string – Zubax Robotics
• Device description string – Zubax Babel
• Device ID – the 128-bit globally unique device ID (section 2.5) as a hexadecimal string

2.4.3 Dronecode debug port

The device features a Dronecode debug port interface available via the standard Dronecode Debug Mini
connector (DCD-Mini)6. This port can be conveniently used with the Zubax Dronecode Probe, or any other
UART-capable hardware with a compatible connector.

The physical location of the connector is documented in the section 2.6.

The Dronecode debug port provides access to the UART and JTAG/SWD interfaces; the latter is mostly useful
for OEM applications and for using Babel as a development board.

2.4.3.1 UART interface

The baud rate can be changed by setting the configuration parameter uart.baudrate (page 22). New baud
rate settings take effect immediately.

The following parameters of the UART interface are fixed and cannot be changed by the user:

• Word size – 8 bit
• Parity control – none
• Stop bits – 1 bit

2.4.3.2 SWD interface

The SWD interface is a standard debug interface implemented in many ARM cores. Please refer to the spe-
cialized literature for additional information.

Information about the use of Babel in OEM applications is provided in the section 5.

The recommended SWD adapter for use with Babel is the Zubax Dronecode Probe.

2.4.3.3 Characteristics

Pin no. Type Name Comment

1 Power TPWR +5 V power supply input/output

2 Output UART_TX

3 Input UART_RX Pulled up with a resistor

4 Input/Output SWDIO For OEM & development use

5 Input SWDCLK For OEM & development use

6 Ground GND Power & signal ground

Table 2.7: Dronecode Debug Mini standard connector pinout

5Get more knowledge and helpful tips at https://kb.zubax.com.
6https://wiki.dronecode.org/workgroup/connectors/start

2. Characteristics 5/28

https://kb.zubax.com/x/iIAh
https://kb.zubax.com/x/iIAh
https://kb.zubax.com
https://wiki.dronecode.org/workgroup/connectors/start

Zubax Babel Datasheet 2021-12-20

Symbol Parameter Min Typ Max Unit

Supported UART baud rates 2400 115200 3 000 000 baud/s

Low-level input voltage -0.3 0 1.6 V

High-level input voltage 2.1 3.3 5.5 V

Low-level output voltage 0 0 0.5 V

High-level output voltage 2.8 3.3 3.4 V

Source/sink current via data pins 10 mA

UART RX pull up resistance 30 40 50 kΩ

Connector resistance during device lifetime 20 40 mΩ

Table 2.8: Dronecode debug port characteristics

2.4.4 SMD pads

Babel exposes a set of SMD pads which facilitate the following applications of the device:

• Programmable CAN module for OEM applications. Babel can be directly soldered into a larger PCB using
the exposed SMD pads.

• CAN development board. Standard 2.54 mm connectors can be soldered to the SMD pads in order to make
the device compatible with standard prototyping breadboards.

• Generic USB/UART GPIO controller (section 4.4.1.6).

Information about the use of Babel in OEM applications is provided in the section 5. The pinout specification
for the SMD pads is provided on the figure 2.4.

Symbol Parameter Min Typ Max Unit

Low-level input voltage -0.3 0 1.6 V

High-level input voltage 2.1 3.3 5.5 V

Low-level output voltage 0 0 0.5 V

High-level output voltage 2.8 3.3 3.4 V

Pull-down or pull-up resistance 25 40 55 kΩ

Source/sink current (magnitude) 10 mA

Table 2.9: SMD signal pad characteristics

2.5 Product identification

This section documents the device properties that are reported in response to identification requests, such
the CLI command zubax_id (section 4.4.1.2).

The product ID string is reported as “com.zubax.babel”. The prefix “com.zubax.” is shared by many of the
products designed by Zubax Robotics.

Every manufactured device has a globally unique 128-bit ID (UID) that cannot be changed.

Every manufactured device is equipped with a certificate of authenticity, which is a function of, among other
things, the UID and the product ID of the device. Please refer to the web resources provided by Zubax
Robotics to learn more about the certificate of authenticity and how it can be used to verify the authenticity
of products.

2.6 Physical characteristics and pinout

The figure 2.3 documents the basic mechanical characteristics of Zubax Babel, such as the placement of
connectors and mounting holes. The pinout of the SMD pads and other connectors is shown on the figure
2.4.

Symbol Parameter Typ Unit

m Mass 4 g

Table 2.10: Physical characteristics

6/28 2. Characteristics

2021-12-20 Zubax Babel Datasheet

Figure 2.3: Physical dimensions of Babel.

2. Characteristics 7/28

Zubax Babel Datasheet 2021-12-20

Micro USB type B

+5VDC input/output

UART TX (output)

UART RX (input)

MCU SWDIO

MCU SWCLK

GND

+5VDC input/output

CAN H

CAN L

GND

+3.3VDC output
+5VDC input/output

GND

USB DP
USB DM

DCD Port UART TX (output)

DroneCode Debug Port
a.k.a. DCD Port
JST SM06B

DCD Port UART RX (input)

GND

BOOT0

PA5
SPI1 SCK

TIM2 CH1 ETR
TIM14 CH1
TIM12 CH2

ADC IN5
DAC1 OUT2

PA6
SPI1 MISO

COMP1 OUT
TIM3 CH1

TIM13 CH1
TIM16 CH1

ADC IN6
DAC2 OUT1

PB0
SPI1 MOSI
TIM3 CH2
TIM3 CH3

ADC IN8
SDADC1 AIN6P

PA4
SPI1 NSS
SPI3 NSS
TIM3 CH2

TIM12 CH1
ADC IN4

DAC1 OUT1

PB6
I2C1 SCL
TIM16 CH1N
TIM3 CH3
TIM4 CH1
TIM19 CH1
TIM15 CH1

PB7
I2C1 SDA
TIM17 CH1N
TIM3 CH4
TIM4 CH2
TIM19 CH2
TIM15 CH2

CAN bus
UAVCAN Micro Connectors
JST GH 1.25mm

Figure 2.4: Babel pinout.

8/28 2. Characteristics

2021-12-20 Zubax Babel Datasheet

3 Operating principles

3.1 Overview

Babel keeps its CAN controller disabled by default in order to ensure that no unnecessary interference with
the CAN bus is introduced. The CAN controller is enabled only if the host has requested Babel to open the
data tunnel. This is reviewed in more detail in the section 4.

When opening the data tunnel, it is possible to explicitly specify the desired bit rate of the CAN bus. If the
CAN bit rate was not specified explicitly, Babel will use the value stored in the parameter can.bitrate (page

22). If the bit rate was specified explicitly, the parameter value will be automatically updated.

When the tunnel is opened, all of the buffers become flushed (i.e. cleared) and the interface statistic counters
get reset. An attempt to open the tunnel when it is already opened is interpreted as if there was an implicit
close command before the tunnel is re-opened again.

Babel contains two RX buffers connected in series: a hardware buffer that can contain up to 3 CAN frames,
and a software buffer that can contain up to 255 CAN frames. The specifics of RX buffering are explained in
the subsequent chapters of this document.

The capacity of the software TX buffer is 100 frames. The TX logic is not equipped with hardware buffers.

Babel runs a single instance of an SLCAN protocol handler that can be attached either to the USB CDC ACM
interface (virtual serial port) or to the physical UART interface. By default, the UART interface is used. If Babel
detects that the USB interface is connected to a USB host, it disconnects the SLCAN protocol handler from
the UART port and attaches it to the USB CDC ACM port. The reverse happens when the USB port becomes
disconnected. It is therefore impossible to use both USB and UART interfaces at the same time concurrently.

3.2 Start up and initialization

Immediately after powering on, the device starts the embedded bootloader (described in detail in the sec-
tion 7). The bootloader awaits for external commands for a few seconds. If no commands requesting it to
download a new firmware image or to wait longer were received, and if a valid application (i.e. firmware)
was found in the ROM, the bootloader starts the application. If no valid application is found in the ROM, the
bootloader will wait for commands forever.

3.3 GPIO pins

The device allows the user to control some of its SMD-exposed GPIO pins via CLI (section 4.4.1.6). The
specified GPIO configuration survives until the device is restarted. Upon restart, the default configuration
is applied, which is identical for all GPIO pins: discrete input with pull-down.

3.4 LED indicators

Babel is equipped with four separate LED indicators that reflect the current state of the device. Their func-
tions are summarized in the table 3.4.

Color Name Behavior

Red CAN power LED Glows when the CAN bus power output is enabled.

Orange CAN terminator LED Glows when the CAN bus termination resistor is enabled.

Blue Status LED See table 3.4.

Green CAN traffic LED Blinks once if at least one CAN frame was successfully transmitted
or successfully received in the last 25 milliseconds. Glows steadily
when the intensity of CAN traffic is higher than 40 frames per sec-
ond. The function of this LED is different while the bootloader is
running; see the section 7.

Table 3.1: LED indicators

The behavior of the status LED is more complex than that of other indicators. It is specified in the table

3. Operating principles 9/28

Zubax Babel Datasheet 2021-12-20

3.4. Observe that there is one special mode that is used while the embedded bootloader is running. The
bootloader is documented separately in the section 7.

Status LED pattern (step 50 ms) LED behavior

Bootloader is running Glowing continuously. In this
mode, the CAN traffic LED behaves
as described in the section 7.

CAN channel closed Turned OFF

CAN channel open, normal operation Blinking 1 Hz

CAN channel open, error passive Blinking 4 Hz

CAN channel open, bus off Blinking 10 Hz

Table 3.2: Status LED behavior

10/28 3. Operating principles

2021-12-20 Zubax Babel Datasheet

4 SLCAN protocol

4.1 Introduction

The SLCAN protocol (also known as LAWICEL protocol) is a quasi-standard protocol designed for tunneling
of CAN data (such as CAN frames, commands, and adapter status information) via serial links (such as UART
or USB virtual serial ports).

Babel implements all of the mandatory SLCAN commands, so that its compatibility with third party software
products that rely on SLCAN is ensured. A brief recap of the standard SLCAN commands implemented in
third-party products can be found in the appendix A.

SLCAN is an ASCII text-based protocol, where the data is exchanged in blocks. A block may contain only
printable ASCII characters.

The end of a block is marked either with the ASCII carriage return character (\r, code 13), which is inter-
preted as a positive acknowledgement (ACK); or the ASCII bell character (\a, code 7), which is interpreted as
a negative acknowledgement (NACK).

A block begins with a well-defined character which indicates the kind of information the block is carrying; in
this description we’re going to refer to this character as Block ID.

The protocol defines three types of data blocks:

Command Blocks of this type are sent from the host to the adapter.

Response Blocks of this type are sent from the adapter to the host as a reaction to a command. All commands
provide exactly one response, unless stated otherwise.

Notification Blocks of this type are generated by the adapter asynchronously.

All commands and notifications are always terminated with the ACK character (\r). A response will be ter-
minated with ACK if the corresponding command has been executed successfully, and with NACK if the
command has failed or if the command could not be understood by the adapter.

Babel also implements an extension on top of the SLCAN protocol that allows the host to execute arbitrary
CLI commands over the same serial link that is used by SLCAN. This feature is documented in the section 4.4.

Note that some commands alter the configuration parameters of the adapter. All parameters are automat-
ically stored in a non-volatile memory, and their values are restored automatically whenever the adapter is
turned on. The section 6 provides an in-depth description of the configuration parameters and their non-
volatile storage.

The SLCAN interface can be exposed either via USB or via UART, but not both at the same time. Babel con-
nects the SLCAN interface to the USB virtual serial port as long as it is connected to a USB host. When the
USB interface is disconnected, the SLCAN interface is available via UART.

A high quality host-side implementation of the SLCAN protocol in Python can be found in the PyUAVCAN
library (MIT software license).

4. SLCAN protocol 11/28

http://uavcan.org/Implementations/Pyuavcan/
http://uavcan.org/Implementations/Pyuavcan/

Zubax Babel Datasheet 2021-12-20

4.2 SLCAN commands

4.2.1 CAN controller configuration commands

Block ID Arguments Purpose

S Section 4.2.1.1 Set the CAN bit rate. The CAN bit rate will be stored in the configuration
parameter can.bitrate (page 22).

O
(capital o)

None Open CAN channel in normal mode; re-open if already open. The bit rate
value will be taken from can.bitrate (page 22).

L None Open CAN channel in silent mode (listen only); re-open if already open.
The bit rate value will be taken from can.bitrate (page 22). Section 4.2.1.2.

l
(lowercase L)

None Open CAN channel in normal mode with loopback enabled; re-open if al-
ready open. The bit rate value will be taken from can.bitrate (page 22).
Section 4.2.1.3.

C None Close CAN channel; do nothing if the channel is not open.

M Any This command is not applicable to Babel, it is implemented only for com-
patibility reasons. Arguments are not validated.

m Any See M.

Table 4.1: CAN controller configuration commands

All commands return ACK (\r) on success and NACK (\a) on failure. Commands that are implemented only
for compatibility always report success.

4.2.1.1 CAN bit rate configuration

The command S accepts a non-negative decimal number which represents the desired CAN bit rate. If the
channel is open, changes in the bit rate configuration will not take effect until it is re-opened again. The
values are interpreted as specified in the table 4.2.1.1.

Value Interpretation, bit/s

0 10000

1 20000

2 50000

3 100000

4 125000

5 250000

6 500000

7 800000

8 1000000

Any other The number is interpreted as-is, no additional conversion is performed.

Table 4.2: CAN bit rate setting interpretation

4.2.1.2 Silent mode

When the channel is open in the silent mode, the adapter configures its CAN controller in silent mode as
well. This mode ensures that the adapter will not interfere with the CAN bus, regardless of the physical state
of the interface (e.g. the controller will not confirm received CAN frames; transmission of any CAN frames,
including error frames, will never take place).

In silent mode, all outgoing CAN frames are ignored by the adapter. CAN frames received from the bus are
processed as usual.

4.2.1.3 Loopback mode

When the channel is open with loopback enabled, all transmitted frames will be immediately sent back to
the host after they were successfully delivered to the CAN bus.

If the SLCAN flags are enabled, loopback frames will be marked with an appropriate flag. More information
on SLCAN flags is provided in the section 4.3.

12/28 4. SLCAN protocol

2021-12-20 Zubax Babel Datasheet

4.2.2 CAN frame transmission commands

The following documentation uses the specified below notation to document the arguments of SLCAN com-
mands:

i A hexadecimal digit that encodes the identifier of the current CAN frame.

d A hexadecimal digit that encodes the DLC (data length code) of the current CAN frame.

* An arbitrary sequence of useful bytes encoded as a hexadecimal string. For example, the sequence 0110FF
encodes the following sequence of three bytes: 1, 16, 255.

In SLCAN, hexadecimal digits can use both uppercase and lowercase Latin letters; therefore, the complete
set of characters that may occur in a hexadecimal number is as follows: 0123456789 abcdef ABCDEF.

Block ID Argument format Transmitted frame Example of a complete SLCAN block

T iiiiiiiid* Data frame with 29-bit ID T0123456780102030405060708\r

t iiid* Data frame with 11-bit ID t7FF0\r

R iiiiiiiid RTR frame with 29-bit IDa R1234f00d8\r

r iiid RTR frame with 11-bit IDa r008\r

a RTR frames don’t carry payload data.
Table 4.3: CAN frame transmission commands

All of the above listed commands may generate the responses specified in the table 4.2.2.

Note that if a frame could not be scheduled for transmission due to the TX buffer being full, the adapter
would still return success. Use the SLCAN flags together with the loopback mode in order to be able to detect
when outgoing frames are dropped by the adapter.

Response Meaning

Z\r The frame has been processed successfully (for 29-bit ID).

z\r The frame has been processed successfully (for 11-bit ID).

\a The adapter could not transmit the frame. Some of the possible reasons include: a mal-
formed SLCAN block, the CAN channel is not open.

Table 4.4: CAN frame transmission responses

4.2.3 Miscellaneous commands

Block ID Arguments Purpose

U Section 4.2.3.1 Set the UART baud rate. The setting will be stored in the configuration pa-
rameter uart.baudrate (page 22).

Z 0 or 1 Enable or disable the RX and loopback timestamping. The provided value
will be stored in the configuration parameter slcan.timestamping_on
(page 22).

F None Get and clear the status flags.

V None Get the hardware and software version numbers.

N None Get the 128-bit unique ID of the device as a hexadecimal string (section 2.5).

Table 4.5: Miscellaneous commands

4.2.3.1 UART baud rate configuration

The command U accepts a non-negative decimal number which represents the desired UART baud rate.

The changes will take effect shortly after the command is executed (typically within 100 milliseconds), no
reboot is necessary; therefore, the host should adjust the baud rate of the serial port immediately after this
command is executed.

The argument is interpreted as specified in the table 4.2.3.1.

4. SLCAN protocol 13/28

Zubax Babel Datasheet 2021-12-20

Value Interpretation, baud/s

0 230400

1 115200

2 57600

3 38400

4 19200

5 9600

6 2400

Any other The number is interpreted as-is, no additional conversion is performed.

Table 4.6: UART baud rate setting interpretation

At least the following baud rates are supported by the UART interface: 2400, 9600, 19200, 38400, 57600, 115200
(this is the default), 230400, 460800, 921600, 1 000 000, 3 000 000.

4.2.3.2 CAN frame timestamping

The command Z can be used to enable and disable the CAN frame timestamping feature.

The state of the timestamping feature is kept in the configuration parameter slcan.timestamping_on (page

22).

The changes will take effect shortly after the command is executed (typically within 100 milliseconds), no
reboot is necessary.

4.2.3.3 Reading and clearing the status flags

The command F produces the following response:

F??\r

Where ?? is a hexadecimal bit mask. The meaning of each bit in the bit mask is documented in the table
4.2.3.3. Bits that are not used should be ignored when processing the bit mask.

Bit 2Bit Name Meaning

0 1 Not used.

1 2 Not used.

2 4 Not used.

3 8 RX overrun The RX queues (software, hardware, or both) have overflowed at least once
since the last invocation of the F command or since the channel was opened.

4 16 Not used.

5 32 Error passive The CAN error counter values are above the error passive limit (refer to the
CAN bus specification for details).

6 64 Not used.

7 128 Bus off The CAN controller is in the bus off state (refer to the CAN bus specification
for details).

Table 4.7: Bits of the F bit mask

4.2.3.4 Requesting the version information

The command V produces the following response:

V????\r

Where the fields are one-digit hexadecimal numbers with the following meanings, in that order:

• Hardware version, major.
• Hardware version, minor.
• Software version, major.
• Software version, minor.

14/28 4. SLCAN protocol

2021-12-20 Zubax Babel Datasheet

4.3 SLCAN notifications

Babel emits SLCAN notifications in the following cases:

• A CAN frame is received.
• If loopback is enabled: a CAN frame has been successfully delivered to the bus.

The format of notifications is the same as for the CAN transmission commands, as described in the table 4.3.

Block ID Argument format Purpose

T iiiiiiiid* Received or successfully transmitted a 29-bit data frame.

t iiid* Received or successfully transmitted an 11-bit data frame.

R iiiiiiiid Received or successfully transmitted a 29-bit RTR frame.

r iiid Received or successfully transmitted an 11-bit RTR frame.

Table 4.8: SLCAN notifications

Obviously, notifications for transmitted frames will be emitted only if the channel is open in the loopback
mode.

Frame notifications may be extended with timestamps and/or with flags, depending on the values of the
configuration parameters slcan.timestamping_on (page 22) and slcan.flags_on (page 22), respectively.

When timestamping is enabled, every emitted CAN frame notification will be appended with four more hex-
adecimal characters containing the time, in milliseconds, when the frame was received. The millisecond
timestamp overflows every 60 000 milliseconds (once a minute), so the valid values lie in the range from 0 to
59 999, inclusive.

The frame timestamp can be converted into the target clock domain, e.g. the monotonic clock of the host
system, using the Olson algorithm7 (the timestamp synchronization feature in PyUAVCAN is based on the
Olson algorithm as well).

In the loopback mode with timestamping enabled loopback frame notifications will carry the timestamp of
the moment when they were delivered to the bus. This is sometimes called “TX timestamping”.

When SLCAN flags are enabled, frame notifications will be amended as listed below. Note that flags are always
added at the end of an SLCAN block.

• Loopback frames will be appended with the character L at the end of the block. This flag allows the host to
distinguish frames received from the bus from transmitted frames that were looped back.

• Other flags may be added in future revisions of the protocol.

For example, an outgoing frame T12345678401234568 will be looped back as shown in the table 4.3, de-
pending on the configuration.

Flags? Timestamping? Representation Comment

No No T12345678401234568\r No changes.

No Yes T123456784012345680BED\r Transmission timestamp 3053 millisec-
onds.

Yes No T12345678401234568L\r Added flag L.

Yes Yes T123456784012345680BEDL\r Both of the above two, flag after the times-
tamp.

Table 4.9: SLCAN notification example

4.4 CLI extensions

Babel implements a proprietary extension of the SLCAN protocol that allows it to run a conventional CLI8

shell over the same serial port that is used for SLCAN communications, while maintaining full compatibility
with SLCAN.

A CLI command is a sequence of printable ASCII characters terminated with the \r\n sequence (ASCII codes
13, 10). The first non-whitespace character of a CLI command sequence cannot be also a valid SLCAN block

7“A Passive Solution to the Sensor Synchronization Problem”, Edwin Olson, 2010.
8Command line interface.

4. SLCAN protocol 15/28

https://files.zubax.com/products/com.zubax.babel/olson_sensor_synchronization.pdf

Zubax Babel Datasheet 2021-12-20

ID9. The last limitation is necessary to ensure that the adapter can unambiguously distinguish between a CLI
command and an SLCAN block at the time of reception of the first character. The early detection of SLCAN
blocks allows the protocol state machine to dispatch CAN frames with minimal latencies.

Every CLI command returns a response that begins with the exact copy of the received command terminated
with \r\n, then followed by an arbitrary number of lines of text, each terminated with \r\n, and finalized
with the ASCII END-OF-TEXT character (code 3) immediately followed by the final \r\n.

For example, a command “cfg list ” (the excessive spaces were added for the purposes of demon-
stration) may produce the following response (in this example, the non-printable characters are shown with
escape sequences, e.g. \r):

cfg list \r\n
can.bitrate = 1000000 [10000, 1000000] (1000000)\r\n
can.power_on = 0 [0, 1] (1)\r\n
can.terminator_on = 0 [0, 1] (1)\r\n
slcan.timestamping_on = 1 [0, 1] (1)\r\n
slcan.flags_on = 0 [0, 1] (0)\r\n
uart.baudrate = 115200 [2400, 3000000] (115200)\r\n
\x03\r\n

Where \x03 is the ASCII END-OF-TEXT character.

The following properties of the protocol allow both the adapter and the host distinguish SLCAN data from
CLI data in real time:

• CLI commands and their responses are terminated with \r\n rather than plain \r.
• A valid SLCAN command cannot be also a valid CLI command.

A compliant SLCAN driver that is capable of dealing with CLI extensions with virtually zero performance
penalty can be found in the PyUAVCAN library.

CLI commands can be executed manually by connecting to the SLCAN port using a terminal emulator pro-
gram. In this case it is recommended to enable local echo in the terminal emulator program, because the
SLCAN protocol does not provide remote echo.

4.4.1 CLI commands

This section documents the implemented CLI commands and provides usage instructions for them.

4.4.1.1 cfg

This command provides access to the configuration parameter storage. The configuration parameters and
their non-volatile storage are described in detail in the chapter 6.

Syntax:

• cfg list— list all configuration parameters, their current values, acceptable value intervals, and default
values.

• cfg save— save the current configuration into the non-volatile storage. This command is redundant and
normally need not be used, because firmware revisions starting from v1.1 commit all configuration into
the non-volatile storage automatically upon modification.

• cfg erase— erase the current configuration and reset the non-volatile memory to the factory defaults.
• cfg set <name> <value>— assign the configuration parameter named <name> the value <value>. For

example: cfg set foo 42. The non-volatile storage will be updated automatically.

The syntax cfg list prints one parameter per line, where the line is formatted as follows:

name = value [min, max] (default)

The number of whitespaces between tokens may vary.

Floating point parameters are always reported with the point symbol (.), which allows one to distinguish
them from integer and boolean typed parameters.

Boolean parameters are reported as integers, where 1 represents the logical true and 0 represents the logical

9For example, “T12345678401234568” is not a valid CLI command, but “fooT12345678401234568” is acceptable.

16/28 4. SLCAN protocol

2021-12-20 Zubax Babel Datasheet

false. They can be distinguished from integer parameters by their minimum and maximum values being 0
and 1, respectively.

Whenever a parameter is assigned a new value, the device verifies if the new value is within the acceptable
limits. If it is, the new value is assigned. Otherwise, the old value is retained. Afterwards the device prints out
the resulting value of the parameter in the following format:

name = value

The number of whitespaces between tokens may vary.

The response can be used to check whether the new value was accepted by the device or not.

4.4.1.2 zubax_id

This command is available in all Zubax products that implement a command-line interface. It reports the
complete information identifying this particular product: type, version information, make and model. The
information is printed in a machine-readable yet human-friendly YAML10 format.

An example output is shown in the following listing. The meaning of each well-defined field is explained in
the table 4.4.1.2. Note that the ordering of the fields is not guaranteed to be constant; furthermore, additional
fields may be added in future firmware revisions.

product_id : 'com.zubax.babel'
product_name : 'Zubax Babel'
sw_version : '1.0'
sw_vcs_commit: 48923790
sw_build_date: Jun 20 2016
hw_version : '1.0'
hw_unique_id : 'OAAyAA1XMkEzNjkgAAAAAA=='
hw_info_url : http://device.zubax.com/device_info?uid=380032000D5732413336392000000000
hw_signature : 'SknsmA7XugU9pF/+NNOoU26Gdq9VvhO3O1Cw2qim17RXsU8yOISoKOdMIh4QIHtXr36sMfx
H397RlSNc0TtWDPOyA713z0k+v+ZY5PGXkRFiUfspnU/EJ8+r0url2dYp7NApx4lOklOgNgHrGCA6lPxA8UqoW
9jdqaASuqpFZKg='

Field name Meaning

product_id Product type identifier string. The same string is reported via UAVCAN as the node
name string.

product_name Human-readable product name.

sw_version Firmware version number in the form “major.minor”.

sw_vcs_commit Firmware version short commit identifier (e.g. short git commit hash). The abbrevia-
tion VCS stands for “version control system”. This number allows to pinpoint the exact
revision of the firmware that is currently running.

sw_build_date Firmware build date in the form “mmm dd yyyy”.

hw_version Hardware version number in the form “major.minor”.

hw_unique_id The 128-bit unique ID of this specific hardware instance (section 2.5). The UID is rep-
resented either as a hexadecimal string, or as a Base64 encoded string.

hw_signature The certificate of authenticity (CoA) of this specific hardware instance encoded in a
Base64 string. If this data is missing, please inform Zubax Robotics as soon as possible.

hw_info_url Link to the web page that contains the test report, origin information, traceability data,
and other important information about this specific hardware instance provided by
the vendor. If this data is missing, or if the linked web page is unreachable, please
inform Zubax Robotics as soon as possible.

Table 4.10: Zubax ID fields

4.4.1.3 stat

Returns a YAML dictionary containing the immediate state information of the adapter.

The statistic counters are reset every time the channel is opened. Note that the statistics are kept intact after
the channel is closed.

At least the following fields are reported in the output:

open Whether the CAN channel is open, either true or false.

10https://en.wikipedia.org/wiki/YAML

4. SLCAN protocol 17/28

https://en.wikipedia.org/wiki/YAML

Zubax Babel Datasheet 2021-12-20

state One of the following: error_active, error_passive, bus_off. Please refer to the CAN protocol
specification for the description of each state.

receive_error_counter CAN receive error counter. Refer to the CAN protocol specification for more infor-
mation.

transmit_error_counter CAN transmit error counter. Refer to the CAN protocol specification for more in-
formation.

errors The number of CAN protocol errors reported by the CAN controller hardware.

bus_off_events The number of registered bus off events.

sw_rx_queue_overruns The number of overruns of the software RX queue. The software RX queue is posi-
tioned after the hardware RX queue.

hw_rx_queue_overruns The number of overruns of the hardware RX queue. The hardware RX queue is
positioned before the software RX queue.

frames_tx The number of CAN frames successfully delivered to the bus. Frames that were dropped due to
overruns of the TX queue do not affect this statistic.

frames_rx The number of CAN frames received from the bus. This statistic also includes frames that were
lost due to overruns of the software RX queue. Frames that were lost due to overruns of the hardware RX
queue do not affect this statistic.

tx_queue_capacity The capacity of the TX queue.

tx_queue_peak_usage The peak usage of the TX queue.

rx_queue_capacity The capacity of the RX queue.

rx_queue_peak_usage The peak usage of the RX queue.

tx_mailbox_peak_usage The maximum number of TX mailboxes that were used simultaneously by the
driver. The adapter uses an advanced algorithm of TX mailbox assignment in order to eliminate the inner
priority inversion problem.

bus_voltage The voltage of the CAN bus power supply line, in volts.

An example output of this command is shown below:

open : true
state : error_active
receive_error_counter : 0
transmit_error_counter: 0
errors : 0
bus_off_events : 0
sw_rx_queue_overruns : 0
hw_rx_queue_overruns : 0
frames_tx : 0
frames_rx : 0
tx_queue_capacity : 100
tx_queue_peak_usage : 0
rx_queue_capacity : 255
rx_queue_peak_usage : 0
tx_mailbox_peak_usage : 0
bus_voltage : 4.8

4.4.1.4 bootloader

This command reboots the device into the bootloader mode, described in the section 7. It can be used to
initiate a firmware update procedure over USB or UART.

When the bootloader is started using this command, it will not boot the application automatically upon
expiration of the boot timeout.

4.4.1.5 reboot

Unconditionally reboots the device.

18/28 4. SLCAN protocol

2021-12-20 Zubax Babel Datasheet

4.4.1.6 gpio

Controls the GPIO pins exposed on the SMD pads. This command is available since firmware v1.2.

Syntax:

• gpio <pin>— read the current status of the pin without changing its mode.
• gpio <pin> <mode>— apply the specified mode and then read the status of the pin.

Where pin can be one of the following (see the pinout diagram 2.4) (case sensitive):

• pa4
• pa5
• pa6
• pb0
• pb6
• pb7

The mode argument, if specified, can be one of the following (case sensitive):

• oh— discrete output at high level.
• ol— discrete output at low level.
• ih— discrete input with pull-up.
• il— discrete input with pull-down.

Upon successful execution, the command returns either h or l (lowercase Latin L), depending on the current
logical level of the selected pin.

The specified GPIO configuration survives until the device is restarted. After restart, the default GPIO config-
uration will be applied, as specified in the section 3.3.

4. SLCAN protocol 19/28

Zubax Babel Datasheet 2021-12-20

5 OEM applications
Besides its primary role of a USB-CAN or UART-CAN adapter tool, Babel can be effectively used as an inte-
gral part of a larger system or a device: either as a CAN adapter or, if loaded with a custom user-developed
firmware, in a completely different role. These use cases are referred to as OEM applications.

Additionally, Babel can be used as a prototyping platform for quick development of CAN-dependent (and
especially UAVCAN-centric) applications.

More information about development of custom applications for Babel is available in the Zubax Knowledge
Base11.

5.1 SMD pads

It is expected that OEM applications may require Babel to be installed on a custom PCB. For this reason,
Babel is given SMD pads spaced at the standard 2.54 mm pitch. Standard 2.54 mm pin connectors can be
soldered to the SMD pads in order to enable easy integration with standard breadboards.

The signals that are routed to the SMD pads and other connectors are shown on the figure 2.4.

5.2 Custom applications

Please refer to Zubax Knowledge Base for detailed information about development of custom applications.

Zubax Babel is based on the microcontroller STM32F373CBT6; its main characteristics are outlined below.

• Core: ARM Cortex-M4F (with a hardware floating point unit) clocked at 72 MHz.
• Flash memory capacity: 128 KB.

• First 32 KB are occupied by the bootloader and some auxiliary persistent data (which should never be
erased by the user).

• The following 94 KB are available for the user’s application.
• Last 2 KB are reserved for non-volatile configuration storage.

• RAM capacity: 24 KB.
• First 256 bytes are reserved for the bootloader.
• Remaining 24320 bytes are available for the user’s application.

Custom applications can be loaded either directly via the SWD interface12, in which case great care should
be taken to not accidentally erase the bootloader; or via the bootloader itself. More information about the
bootloader can be gathered in the section 7.

11https://kb.zubax.com
12We recommend Zubax Dronecode Probe for this task.

20/28 5. OEM applications

https://kb.zubax.com

2021-12-20 Zubax Babel Datasheet

6 Configuration parameters
Configuration parameters are stored in a non-volatile memory on the adapter. They can be modified by using
the CLI and also by using dedicated SLCAN commands, as described in the section 4.

UAVCAN GUI Tool13 provides a convenient way of managing the Babel’s configuration parameters.

Figure 6.1: Using the UAVCAN GUI Tool for configuration parameter management.

6.1 Non-volatile configuration storage

All configuration parameters are stored in a non-volatile memory that retains its contents across power cy-
cles.

Modification of any single parameter will trigger the device to commit all of them into the non-volatile mem-
ory.14

If the device is turned off while the configuration storage is being updated, the stored configuration data may
get damaged.

The stored configuration is read from the non-volatile memory once upon boot-up. If the device detects that
the stored configuration data has been damaged, it will automatically revert to the factory default configu-
ration. Babel can always reliably detect damage of the stored configuration data, so it is guaranteed that an
invalid configuration can never be loaded.

6.2 Firmware update considerations

The configuration parameter sets of different firmware revisions may be incompatible with each other. For
instance, some configuration parameters may be added, removed, or their value intervals may be changed.

Babel always checks whether the stored configuration data is compatible with the current firmware revision.
If it is detected that the stored configuration cannot be applied to the current version of the firmware, the
device will automatically revert to the factory default configuration.

Keep these considerations in mind when updating the firmware.

13http://uavcan.org
14The auto-save feature is available since firmware v1.1.

6. Configuration parameters 21/28

http://uavcan.org

Zubax Babel Datasheet 2021-12-20

6.3 Configuration parameter index

The minimum, maximum, and default values provided in the table are shown for exemplary purposes only,
and they are not expected to be valid for all firmware revisions that this document applies to. Intervals and
default values may change in newer revisions of the firmware or the hardware.

Name
SLCAN

alias
Takes
effect at Pages Min Max Def. Description

can.bitrate S channel open 3, 9, 11 10 000 1 000 000 1 000 000 CAN bus bit rate, in bit/s.

can.power_on immediately 2, 4 0 1 1 Enable CAN bus power output.

can.terminator_on immediately 3, 4 0 1 1 Enable the embedded CAN bus termination resis-
tor.

slcan.timestamping_on Z immediately 13, 14, 15 0 1 1 Time stamp all incoming and outgoing CAN
frames.

slcan.flags_on immediately 15 0 1 0 Enable flags for SLCAN notifications (SLCAN pro-
tocol extension).

uart.baudrate U immediately 5, 13 2400 3 000 000 115200 Baud rate of the UART port.

Table 6.1: Configuration parameter index

22/28 6. Configuration parameters

2021-12-20 Zubax Babel Datasheet

7 Embedded bootloader

7.1 Introduction

Babel employs the Zubax Embedded Bootloader – a highly robust open source bootloader designed for
deeply embedded systems that can update firmware over USB and serial port. The bootloader also offers
advanced integrity checking capabilities.

The bootloader starts immediately after the device has been powered on. Having started, the bootloader
checks if there is a valid application (i.e. firmware) that can be executed. If there is one, the bootloader mea-
sures a 5 second timeout since the point of its initialization, and once the timeout has expired, the bootloader
starts the application, unless an external entity has requested it to download a new application image or to
wait longer. If there is no valid application found (i.e. nothing to boot), the bootloader will wait forever for
commands.

The details about the supported communication interfaces are summarized in the table 7.1. Observe that
this bootloader does not make use of the CAN bus interface. As long as the bootloader is running, the CAN
controller remains inactive in order to avoid any interference with the CAN bus the device may be connected
to.

The CAN power supply output and the CAN termination resistor remain inactive while the bootloader is
running.

The bootloader is fully fault-tolerant. If the update process fails at any point for any reason (e.g. commu-
nication failure, power supply failure, and so on), the device may end up with a damaged application. The
bootloader is able to recognize this condition and refuse to start the invalid application. In order to recover
from this state, the update process simply needs to be restarted.

As an additional safety measure, the bootloader uses a hardware watchdog timer that allows it to abort ap-
plications that do not start properly. This minimizes the chances of permanently incapacitating the device15

by uploading a dysfunctional application image.

Interface Parameters Protocol Note

USB CDC ACM (vir-
tual serial port)

YMODEM, XMODEM, XMODEM-
1K (autodetect)

When USB is connected, the UART
interface is inactive.

UART 115200-8N1
(fixed)

Same as USB Available only while USB is discon-
nected.

Table 7.1: Bootloader communication interfaces

7.2 State machine

The behavior of the bootloader if defined by a simple state machine documented on the figure 7.1. The table
7.2 summarizes the states.

ID Name Description

0 NoAppToBoot There is no valid application to boot; the bootloader will be waiting for
commands forever.

1 BootDelay The bootloader will start the application in a few seconds, unless booting
is canceled or an application update is requested.

2 BootCancelled There is a valid application to boot; however, booting was canceled by an
external command.

3 AppUpgradeInProgress The application is currently being updated. If interrupted, the bootloader
will switch into NoAppToBoot or BootCancelled.

4 ReadyToBoot The application is about to be booted. This state is very transient and is
left automatically as soon as possible.

Table 7.2: Bootloader states

15Bricking.

7. Embedded bootloader 23/28

Zubax Babel Datasheet 2021-12-20

NoAppToBoot BootDelay

BootCancelled

AppUpgradeInProgress

ReadyToBoot

Bootloader started

Boot cancelled
e.g. "wait" command executed

Loading the application

ReadyToBoot is an auxiliary
state, it is left automatically

as soon as possible

Valid application foundNo valid application found

Upgrade successful, received image is valid

Boot delay expired
(typically 5 seconds)

Upgrade requested,
e.g. "download"
command executed

Upgrade failed,
or invalid
image received

Figure 7.1: Bootloader state machine.

7.3 LED indication

While the bootloader is running, the LED indicators behave as described in this section.

The status LED (blue) is always on, which is the main indicator that the bootloader, rather than the
application (firmware), is currently running.

The CAN traffic LED (green) displays one of the blinking patterns shown in the table 7.3, depending on
which state the bootloader is in.

Bootloader state LED pattern (step 50 ms) LED behavior

NoAppToBoot Blinking 10 Hz (very quickly)

BootDelay, ReadyToBoot Turned off

BootCancelled Blinking 1 Hz, short pulses (50 ms)

AppUpgradeInProgress Blinking 1 Hz, long pulses (500 ms)

Table 7.3: Bootloader state indicated via the CAN traffic LED indicator

7.4 Error codes

The table 7.4 provides descriptions for the well defined error codes that can be reported by the bootloader.

Code Description

0 Success.

1 Unknown error.

9001 Application ROM driver error: erase failed.

9002 Application ROM driver error: write failed.

10001 The current state of the bootloader does not permit the requested operation.

10002 Application image is too large for the device. Download has been aborted.

10003 Failed to write the next downloaded chunk of the application image into the ROM.

20001 X/YMODEM interface write has timed out.

20002 X/YMODEM retries exhausted.

20003 X/YMODEM protocol error.

20004 X/YMODEM transfer has been canceled by the remote.

20005 X/YMODEM remote has refused to provide the file.

32767 Unknown error.

Table 7.4: Bootloader error codes

24/28 7. Embedded bootloader

2021-12-20 Zubax Babel Datasheet

7.5 Interface selection

Once started, the bootloader launches a CLI16 instance on the UART port. If the bootloader detects that the
USB interface became active (by virtue of being connected to a USB host), it disconnects the CLI from UART,
rendering the latter silent and unresponsive, and connects the same CLI instance to the USB virtual serial
port. The CLI will remain available on the USB virtual serial port as long as the USB interface is active. Shall
the USB port become disconnected, the bootloader will switch the CLI back to UART. The switching between
USB and UART is fully automatic and happens on the fly.

7.6 USB interface properties

The USB interface will be detected by the host as CDC ACM (also known as virtual serial port). This is a
standard USB class that is supported by vast majority of operating systems out of the box, no special drivers
are required.

The bootloader reports the following properties to the USB host:

• Vendor ID – 0x1D50
• Product ID – 0x60C7
• Vendor string – Zubax Robotics
• Device description string – Zubax Babel Bootloader
• Device ID – the 128-bit globally unique device ID (section 2.5) as a hexadecimal string

7.7 UART interface properties

The UART interface has the following properties that cannot be changed:

• Baud rate – 115200
• Word size – 8 bit
• Parity control – none
• Stop bits – 1

7.8 CLI properties

The CLI uses the CR-LF line ending sequence (\r\n). In order to avoid unintended side effects of exposing
the bootloader’s CLI when the outer hardware expects an SLCAN interface, the bootloader’s CLI does not
return any echo until the input of a valid command has been completed.

For example, entering a command zubax_id will not produce any echo, until the command has been com-
pleted with the \r\n sequence. As such, entering zubax_id\r\n will return the echo followed by the com-
mand output. Echo for invalid commands is never returned.

The delayed echo allows the bootloader to silently ignore all SLCAN traffic and other data it doesn’t recognize.
Otherwise, the echo emitted by the bootloader could be misinterpreted by the connected hardware as valid
SLCAN data.

Due to the above considerations, the CLI does not offer any prompt.

7.9 CLI commands

This section documents the CLI commands that can be of interest to the end user. Some commands that are
not intended for use in production are intentionally omitted from this reference.

7.9.1 reboot

Restarts the bootloader normally.

7.9.2 wait

Instructs the bootloader to not boot the application automatically.

If the current state is BootDelay, the state will be switched to BootCancelled. In all other states the com-
mand will have no effect.

16Command line interface.

7. Embedded bootloader 25/28

Zubax Babel Datasheet 2021-12-20

7.9.3 download

Instructs the bootloader to start an YMODEM/XMODEM/XMODEM-1K receiver on the current serial link
and await for the remote host to begin transmission of the new application image file.

The bootloader will automatically detect which file transfer protocol to use.

According to the YMODEM specification, if no transfer was initiated by the host within one minute, the com-
mand will exit with an error. Possible error codes are defined in the table 7.4.

Note that while this command is running, the CLI will be unavailable, because the same serial link will be
temporarily occupied by the file transfer protocol. Automatic switching between USB and UART is not avail-
able while the command is running.

See the section 7.10 for the detailed information about the implementation.

7.9.4 zubax_id

This is a standard command documented in the section 4.4.1.2. Its implementation in the bootloader, how-
ever, has a number of additional features.

The software version information provided in the output is obtained from the application that is currently
installed on the device. If the bootloader could not find any installed application, the software version fields
will be omitted from the output.17

The version of the bootloader itself is reported via the following set of dedicated fields:

• bl_version – bootloader version, major and minor, formatted as <major>.<minor>
• bl_vcs_commit – bootloader version control system commit identifier as an integer number.
• bl_build_date – the build date of the bootloader.

An additional field named “mode” is set to the string “bootloader” to indicate that the bootloader is currently
running rather than the application.

The table 7.9.4 summarizes the fields reported by the bootloader. Some extra fields may be reported as well,
which are not documented here because they are not designed for production use.

Field name Meaning

product_id Product type identifier string. The same string is reported via UAVCAN as the node
name string.

product_name Human-readable product name.

mode Set to the string “bootloader” to indicate that the bootloader is running.

sw_version Application version number in the form “major.minor”. Omitted if the application
could not be found.

sw_vcs_commit Application version control system commit identifier. Omitted if the application could
not be found.

hw_version Hardware version number in the form “major.minor”.

hw_unique_id The 128-bit unique ID of this specific hardware instance (section 2.5).

hw_signature The certificate of authenticity (CoA) of this specific hardware instance encoded in a
Base64 string. If this data is missing, please inform Zubax Robotics as soon as possible.

bl_version Bootloader version number in the form “major.minor”.

bl_vcs_commit Bootloader version control system commit identifier.

Table 7.5: Zubax ID fields

7.9.5 state

Prints the current state of the bootloader in the following form:

StateName (StateID)

Where StateName is the name of the current state as specified in the table 7.2, and StateID is the numerical
identifier of the current state.

17Version 1.0 of the bootloader used to employ a different convention where the application version fields were using a different prefix: fw_ rather
than sw_.

26/28 7. Embedded bootloader

2021-12-20 Zubax Babel Datasheet

An example output is shown below:

BootCancelled (2)

7.10 YMODEM/XMODEM/XMODEM-1K implementation details

YMODEM, XMODEM, and XMODEM-1K are simple and popular file transfer protocols designed by Ward
Christensen and Chuck Forsberg. You can learn more about these protocols in the Zubax Knowledge Base at
https://kb.zubax.com/x/ZwAz. This section elaborates on the noteworthy implementation details spe-
cific to this application.

The download command starts a multi-protocol receiver. The receiver enters a loop where it emits the ASCII
NAK character to the host, prompting it to begin transmission of the application image file. The receiver will
emit NAK every 5 seconds until the host begins the transmission, until the transfer initialization times out,
or until the host cancels the transmission, whichever happens first. The transfer initialization timeout is set
to 1 minute.

The receiver always uses the NAK character to initiate transfers rather than “C”, which instructs the remote
host to use the plain 8-bit checksum for data integrity checking rather than CRC-16. The data integrity guar-
antees offered by the plain 8-bit checksum algorithm are deemed sufficient, because the data links are con-
sidered reliable enough, and the application image itself is always protected by a strong CRC function.

Being compatible with three different protocols, the receiver supports the following options:

• The host is free to send the zero block with the file metadata, as defined by YMODEM. The receiver will
collect the file size information from the metadata packet and ignore the rest.

• The host is free to use either 256-byte or 1024-byte sized blocks, the receiver supports both. The former are
defined by YMODEM and XMODEM, the latter are defined by YMODEM and XMODEM-1K.

Note that if the size of the application image file has not been provided, the written image will be padded up
to the size of the last data block. This is acceptable, because the trailing bytes after the application image are
not used by any part of the system, and as such their contents can be arbitrary. It is recommended, however,
to fill the padding bytes with 0xFF, in order to match the initial state of the ROM.

There is a large number of software products and scripts that support these file transfer protocols. For in-
stance, the popular program sz (available on most GNU/Linux distributions) can be used as follows (where
$file is the name of the application image file, and $port is the name of the serial port):

sz -vv --ymodem --1k $file > $port < $port

There are various GUI-based alternatives for Windows and Mac OS as well.

7. Embedded bootloader 27/28

https://kb.zubax.com/x/ZwAz

Zubax Babel Datasheet 2021-12-20

A Appendix: Third party SLCAN API implementa-
tions

SLCAN TTY Line Discipline API Comparison of existing serial CAN Protocol Adapters

http://developer.berlios.de/projects/socketcan (c) 2008 Oliver Hartkopp

SLCAN Function CAN232 CANUSB Micronics CANhack Remarks
green = common functions www.can232.com www.canusb.com www.mictronics.de www.canhack.de

End of Command \r (CR) \r (CR) \r (CR) \r (CR) Computer -> CAN Adapter
ACK \r (CR) \r (CR) \r (CR) \r (CR) CAN Adapter -> Computer
NACK \a (BEL) \a (BEL) \a (BEL) \a (BEL) CAN Adapter -> Computer

Setup Bitrate Sx (0 <= x <= 8) Sx (0 <= x <= 8) Sx (0 <= x <= 8) Sx (1 <= x <= 8) no support for S0 (10kBit/s)
Setup BTR sxxxx (xxxx = hex) sxxxx (xxxx = hex) sxxxx (xxxx = hex) sxxxxxx (xxxxxx = hex) no SJA1000 => 6 BTR digits
Open Channel O O O O Operation Mode
Open in Listen Only Mode L L Listen Only Operation Mode
Close Channel C C C C Reset Mode

TX/RX Frame Format SFF tiiildddddddddd... tiiildddddddddd... tiiildddddddddd... tiiildddddddddd... 0 <= 'l' <= 8
TX/RX Frame Format EFF Tiiiiiiiildddddddd... Tiiiiiiiildddddddd... Tiiiiiiiildddddddd... Tiiiiiiiildddddddd... 0 <= 'l' <= 8
TX/RX Frame Format RTR/SFF riiil riiil riiil riiil undocumented but in demo
TX/RX Frame Format RTR/EFF Riiiiiiiil Riiiiiiiil Riiiiiiiil Riiiiiiiil

RTR support since firmware v1.20
Poll single frame P
Poll all frames in FIFO A
Auto Poll Xx (0 <= x <= 1) written in EEPROM
UART Speed Setup Ux (0 <= x <= 6) written in EEPROM

Read Arbitration Lost Register A
Read Error Capture Register E
Read SJA1000 Register Gxx
Write SJA1000 Register Wrrdd

Read Status Flags F F F F With FIFO Information
Timestamp On/Off Zx (0 <= x <= 1) Zx (0 <= x <= 1) Zx (0 <= x <= 1) Zx (0 <= x <= 1) written in EEPROM

Acceptance Mask Mxxxxxxxx Mxxxxxxxx Mxxxxxxxx Mxxxxxxxx
Acceptance Value mxxxxxxxx mxxxxxxxx mxxxxxxxx mxxxxxxxx

HW/SW Version V V V Vcccc\r
Major/Minor Version v v vcccc\r
Serial Number N N N Ncccc\r

source code. 'l' should be 0

Figure A.1: An overview of the SLCAN API implemented in various SLCAN-compatible adapters.
Prepared by Oliver Hartkopp (Linux SocketCAN project).

28/28 A. Appendix: Third party SLCAN API implementations

	Overview
	Accessories
	Enclosure

	Quality assurance

	Characteristics
	Absolute maximum ratings
	Environmental conditions
	Power supply
	Communication interfaces
	CAN bus
	USB
	Dronecode debug port
	SMD pads

	Product identification
	Physical characteristics and pinout

	Operating principles
	Overview
	Start up and initialization
	GPIO pins
	LED indicators

	SLCAN protocol
	Introduction
	SLCAN commands
	CAN controller configuration commands
	CAN frame transmission commands
	Miscellaneous commands

	SLCAN notifications
	CLI extensions
	CLI commands

	OEM applications
	SMD pads
	Custom applications

	Configuration parameters
	Non-volatile configuration storage
	Firmware update considerations
	Configuration parameter index

	Embedded bootloader
	Introduction
	State machine
	LED indication
	Error codes
	Interface selection
	USB interface properties
	UART interface properties
	CLI properties
	CLI commands
	reboot
	wait
	download
	zubax_id
	state

	YMODEM/XMODEM/XMODEM-1K implementation details

	Appendix: Third party SLCAN API implementations

